

 Navigation

 	
 modules

 	
 next |

 	ctypes-ejdb 0.4.7 documentation

ctypes-ejdb

Contents

	Installation

	Usage
	Tutorial

	API References

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Contributors

	History
	0.4.7 (2016-07-20)

	0.4.6 (2015-10-06)

	0.4.5 (2015-09-07)

	0.4.4 (2015-07-30)

	0.4.3 (2015-07-29)

	0.4.2 (2015-07-29)

	0.4.1 (2015-07-27)

	0.4 (2015-07-25)

	0.3.3 (2015-07-24)

	0.3.2 (2015-07-07)

	0.3.1 (2015-07-03)

	0.3 (2015-07-01)

	0.2.1 (2015-07-01)

	0.2 (2015-07-01)

	0.1.1 (2015-06-30)

	0.1.0 (2015-06-28)

 Copyright 2015, Tzu-ping Chung.
 Created using Sphinx 1.3.5.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	ctypes-ejdb 0.4.7 documentation

Installation

You can install ctypes-ejdb with pip:

pip install ctypes-ejdb

The EJDB library should be installed to make database access possible. See EJDB installation guide [http://ejdb.org/doc/install/index.html] for details.

Python 2.7 or 3.3+ is required.

 Copyright 2015, Tzu-ping Chung.
 Created using Sphinx 1.3.5.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	ctypes-ejdb 0.4.7 documentation

Usage

This chapter describes how ctypes-ejdb can be used to manipulate an EJDB instance.

Tutorial

Before we start, make sure you have both ctypes-ejdb and EJDB installed. See Installation for instructions. The following should run without an exception:

import ejdb

Getting a Database

When working with ctypes-ejdb, the first step is to create a Database instance to a new or existing database file.

Todo

	Finish this tutorial.

 Copyright 2015, Tzu-ping Chung.
 Created using Sphinx 1.3.5.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	ctypes-ejdb 0.4.7 documentation

API References

	
exception ejdb.CollectionDoesNotExist

	

	
exception ejdb.DatabaseError

	

	
exception ejdb.OperationError

	

	
exception ejdb.TransactionError

	

	
class ejdb.Collection(database, wrapped)

	Representation of a collection inside a database.

You generally should not instantiate a collection directly. Call
Database.get_collection() to get a collection inside a database
instead.

	
abort_transaction()

	Abort a transaction, discarding all un-committed operations.

	
begin_transaction(allow_nested=False)

	Begin a transaction on this collection.

This can be used directly, with the user calling
commit_transaction() or abort_transaction() later
manually:

collection.begin_transaction()
try:
 ... # Do things.
except:
 collection.abort_transaction()
 raise
else:
 collection.commit_transaction()

Or as a context manager:

with collection.begin_transaction():
 ... # Do things.

In the latter usage, abort_transaction() will be called
automatically when the block exits with an exception; if the block
exits normally, commit_transaction() will be called.

	
commit_transaction()

	Commit a transaction.

	
count(*queries, hints={})

	Get the number of documents in this collection.

	Parameters:	hints – A mapping of possible hints to the selection.

	
create_array_index(path)

	

	
create_index(path, index_type)

	

	
create_istring_index(path)

	

	
create_number_index(path)

	

	
create_string_index(path)

	

	
delete_many(*queries, hints={})

	Delete documents in the collection.

This is an optimized shortcut for find({..., '$dropall': True}).
Use the formal syntax if you want to get the content of deleted
documents.

	Parameters:	hints – A mapping of possible hints to the selection.

	Returns:	Count of documents deleted.

	
delete_one(*queries, hints={})

	Delete a single document in the collection.

This is an optimized shortcut for find_one({..., '$dropall': True}).
Use the formal syntax if you want to get the deleted document’s
content.

	Parameters:	hints – A mapping of possible hints to the selection.

	Returns:	A boolean specifying whether a document is deleted.

	
drop()

	

	
find(*queries, hints={})

	Find documents in the collection.

	Parameters:	hints – A mapping of possible hints to the selection.

	Returns:	A Cursor instance corresponding to this query.

	
find_one(*queries, hints={})

	Find a single document in the collection.

	Parameters:	hints – A mapping of possible hints to the selection.

	Returns:	A mapping for the document found, or None if no matching
document exists.

	
insert_many(documents)

	Insert a list of documents.

	Returns:	A list of OIDs of the inserted documents.

	
insert_one(document)

	Insert a single document.

	Returns:	OID of the inserted document.

	
is_in_transaction()

	

	
optimize_array_index(path)

	

	
optimize_index(path, index_type)

	

	
optimize_istring_index(path)

	

	
optimize_number_index(path)

	

	
optimize_string_index(path)

	

	
rebuild_array_index(path)

	

	
rebuild_index(path, index_type)

	

	
rebuild_istring_index(path)

	

	
rebuild_number_index(path)

	

	
rebuild_string_index(path)

	

	
remove(oid)

	Remove the document matching the given OID from the collection.

This method is provided for compatibility with ejdb-python.

	
remove_array_index(path)

	

	
remove_index(path, index_type=None)

	Remove index(es) on path from the collection.

The index of specified type on path, if given by index_type, will
be removed. If index_type is None, all indexes on path will be
removed.

	
remove_istring_index(path)

	

	
remove_number_index(path)

	

	
remove_string_index(path)

	

	
save(*documents, merge=False)

	Persist one or more documents in the collection.

If a saved document doesn’t have a _id key, an automatically
generated unused OID will be used. Otherwise the OID is set to the
given document’s _id field, possibly overwriting an existing document
in the collection.

This method is provided for compatibility with ejdb-python.

	Parameters:	merge – If evalutes to True, content of existing document with
matching _id will be merged with the provided document’s content.

	
database

	The Database instance this collection belongs to.

	
name

	Name of this collection.

	
class ejdb.Database(path='', options=READ)

	Representation of an EJDB.

A Database instance can be created like this:

db = ejdb.Database(
 path='path_to_db',
 options=(ejdb.WRITE | ejdb.TRUNCATE),
)

The database is opened immediately, unless the path argument evalutes to
False. In such cases the user needs to set the path and manually call
open() later.

	
close()

	Close this EJDB.

	
create_collection(name, exist_ok=False, **options)

	Create a collection in this database with given options.

The newly-created collection is returned. If exist_ok is True,
existing collection with the same name will be returned, otherwise an
error will be raised.

Options only apply to newly-created collection. Existing collections
will not be affected. Possible options include:

	Parameters:	
	large – If True, the collection can be larger than 2 GB.
Default is False.

	compressed – If True, the collection will be compressed with
DEFLATE compression. Default is False.

	records – Expected records number in the collection. Default is
128000.

	cachedrecords – Maximum number of records cached in memory.
Default is 0.

	
drop_collection(name, unlink=True)

	Drop a collection in this database.

Does nothing if a database with matching name does not exist.

	Parameters:	
	name – Name of collection to drop.

	unlink – If True, removes all related index and collection
files. Default is True.

	
find(collection_name, *queries, hints={})

	Shortcut to query a collection in the database.

The following usage:

db.find('people', {'name': 'TP'})

is semantically identical to:

collection = db.create_collection('people', exist_ok=True)
collection.find({'name': 'TP'})

	
find_one(collection_name, *queries, hints={})

	Shortcut to query a collection in the database.

The following usage:

db.find_one('people', {'name': 'TP'})

is semantically identical to:

collection = db.create_collection('people', exist_ok=True)
collection.find_one({'name': 'TP'})

	
get_collection(name)

	Get the collection with name name inside this EJDB.

	
has_collection(name)

	Check whether this EJDB contains a collection named name.

	
is_open()

	Check whether this EJDB is currently open.

	
open()

	Open this EJDB.

This can be used directly, with the user calling close() later
manually:

db.open()
try:
 ... # Do things.
except:
 ... # Handle exceptions.
finally:
 db.close()

Or as a context manager:

with db.open():
 ... # Do things.

In the latter usage, close() will be called automatically when
the block exits.

	
save(collection_name, *documents, merge=False)

	Shortcut to save to a collection in the database.

The following usage:

db.save({'people', {'name': 'TP'})

is semantically identical to:

collection = db.create_collection('people', exist_ok=True)
collection.save({'name': 'TP'})

	
collection_names

	

	
collections

	

	
options

	Options for the EJDB.

This can be modified if the database instance is not opened.

	
path

	Path to the EJDB.

This can be modified if the database instance is not opened.

	
writable

	

	
ejdb.get_ejdb_version(*args, **kwargs)

	Get version of the underlying EJDB C library.

	
ejdb.init(ejdb_path=None)

	

	
ejdb.is_valid_oid(*args, **kwargs)

	Check whether the given string can be used as an OID in EJDB.

The current OID format (as of 1.2.x) is a 24-character-long hex string.

 Copyright 2015, Tzu-ping Chung.
 Created using Sphinx 1.3.5.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	ctypes-ejdb 0.4.7 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/uranusjr/ctypes-ejdb/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

ctypes-ejdb could always use more documentation, whether as part of the
official ctypes-ejdb docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/uranusjr/ctypes-ejdb/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up ctypes-ejdb for local development.

	Fork the ctypes-ejdb repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/ctypes-ejdb.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv ctypes-ejdb
$ cd ctypes-ejdb/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 ctypes-ejdb tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, and 3.4, and for PyPy. Check
https://travis-ci.org/uranusjr/ctypes-ejdb/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests/test_api.py::test_get_ejdb_version

 Copyright 2015, Tzu-ping Chung.
 Created using Sphinx 1.3.5.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	ctypes-ejdb 0.4.7 documentation

Credits

Contributors

	Tzu-ping Chung <uranusjr@gmail.com>

	Gary Lee <garywlee@gmail.com>

 Copyright 2015, Tzu-ping Chung.
 Created using Sphinx 1.3.5.

 Navigation

 	
 modules

 	
 previous |

 	ctypes-ejdb 0.4.7 documentation

History

0.4.7 (2016-07-20)

	Fix crash when querying with invalid parameter names. This now raises an
CommandError.

	Fix memory leak when calling Collection.count.

	Add API to query for a list of collection names in a database without needing
to construct the collections themselves.

	Add API to check whether a database is writable.

	Add flag to disable coloring in CLI, and disable it on Windows by default.

	ejdb.cli now has a --version option.

0.4.6 (2015-10-06)

	Fix Python 2 compatibility regarding ejdb.cfg usage.

	Fix segmentation fault when trying to reuse collection instances retrieved
from iterating through a database.

	ejdb.cli now creates a non-existent database if the path given does not
exist.

	Add a more meaningful error message when the EJDB binary path is not
configured properly.

	Fix documentation on Collection.delete_one() and
Collection.delete_many().

0.4.5 (2015-09-07)

	Fix Collection.delete_one and Collection.delete_many.

0.4.4 (2015-07-30)

	Fix query flag passing.

0.4.3 (2015-07-29)

	Move exit() fix in CLI.

0.4.2 (2015-07-29)

	Fix exit() call in CLI.

0.4.1 (2015-07-27)

	Fix missing NOBLOCK constant.

0.4 (2015-07-25)

	Move command line interface dependencies to extras. New installations now needs to run pip install ctypes-ejdb[cli] to install it. This is better for those who want only the core library.

0.3.3 (2015-07-24)

	Fix Python 2 compatibility.

0.3.2 (2015-07-07)

	Fix attribute lookup in DatabaseError construction.

	Add options to config EJDB path by environ or .cfg file.

	Make document repr look like a dict so it prints better.

0.3.1 (2015-07-03)

	Fixed context manager usage opening a Database.

	Fixed attribute error in Collection.count.

	Fixed document iterator slicing.

	Experimental CLI utility ejdb.cli based on Click and ptpython.

0.3 (2015-07-01)

	Make EJDB path configurable with ejdb.init(path).

0.2.1 (2015-07-01)

	Add save shortcut on database.

0.2 (2015-07-01)

	Fix segmentation fault when converting BSON OID to string.

	Fix error message retrieval in Database.close.

	Tests now run on Windows.

0.1.1 (2015-06-30)

	Fix encoding error in pip install.

0.1.0 (2015-06-28)

	First release on PyPI.

 Copyright 2015, Tzu-ping Chung.
 Created using Sphinx 1.3.5.

 Navigation

 	
 modules

 	ctypes-ejdb 0.4.7 documentation

 Python Module Index

 e

 			

 		
 e	

 	
 	
 ejdb	

 Copyright 2015, Tzu-ping Chung.
 Created using Sphinx 1.3.5.

 _static/down.png

search.html

 Navigation

 		
 modules

 		ctypes-ejdb 0.4.7 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Tzu-ping Chung.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/up.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

